Optimal Proposal Distributions and Adaptive MCMC

نویسنده

  • Jeffrey S. Rosenthal
چکیده

We review recent work concerning optimal proposal scalings for Metropolis-Hastings MCMC algorithms, and adaptive MCMC algorithms for trying to improve the algorithm on the fly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Proposal Distributions and Adaptive MCMC by Jeffrey

We review recent work concerning optimal proposal scalings for Metropolis-Hastings MCMC algorithms, and adaptive MCMC algorithms for trying to improve the algorithm on the fly.

متن کامل

Adaptive independence samplers

Markov chain Monte Carlo (MCMC) is an important computational technique for generating samples from non-standard probability distributions. A major challenge in the design of practical MCMC samplers is to achieve efficient convergence and mixing properties. One way to accelerate convergence and mixing is to adapt the proposal distribution in light of previously sampled points, thus increasing t...

متن کامل

Ergodicity of Adaptive MCMC and its Applications by Chao Yang

Ergodicity of Adaptive MCMC and its Applications Chao Yang Doctor of Philosophy Graduate Department of Statistics University of Toronto 2008 Markov chain Monte Carlo algorithms (MCMC) and Adaptive Markov chain Monte Carlo algorithms (AMCMC) are most important methods of approximately sampling from complicated probability distributions and are widely used in statistics, computer science, chemist...

متن کامل

Implementing componentwise Hastings algorithms

Markov chain Monte Carlo (MCMC) routines have revolutionized the application of Monte Carlo methods in statistical application and statistical computing methodology. The Hastings sampler, encompassing both the Gibbs and Metropolis samplers as special cases, is the most commonly applied MCMC algorithm. The performance of the Hastings sampler relies heavily on the choice of sweep strategy, that i...

متن کامل

Interacting multiple try algorithms with different proposal distributions

We propose a new class of interacting Markov chain Monte Carlo (MCMC) algorithms designed for increasing the efficiency of a modified multiple-try Metropolis (MTM) algorithm. The extension with respect to the existing MCMC literature is twofold. The sampler proposed extends the basic MTM algorithm by allowing different proposal distributions in the multiple-try generation step. We exploit the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008